China Custom Custom Design Driven Roller Chain Idler Sprocket

Product Description

 

Part Name: Drive Sprocket
Type: Tractor Transmission Case Parts
Item No.: 12-37303
Industry Focus: Agricultural
Hardness: Hardened Tooth Surface
Manufacturing Method: Rolling Gear
Application: Engineering Machinery Engine
Performance: High Precision
Number of Row: Double Row
Application: For GN12 tractor, also replacement parts applicable to SIFANG Tractors and Tillers
Feature: 1. Smooth running
2. Easy to maintain, durable .
Factory Add:

Tiller Blade Plant Xihu (West Lake) Dis.ng hardware industrial park, Xihu (West Lake) Dis. district, ZheJiang .

Disc Blade Plant : HangZhou hi-tech development zone, HangZhou, ZheJiang .

Iron Wheel Plant : Xihu (West Lake) Dis. Tongqin Town, HangZhou, zHangZhoug.

Bolt and Nut Plant : Xihu (West Lake) Dis. industrial zone, HangZhou, zHangZhoug.

If you have any enquiry about quotation or cooperation, please feel free to email us, Our sales representative will contact you within 24 hours. Thank you for your interest in our products.

CLICK HERE YOU CAN

Back To Homepage

View more products about Power Tiller Parts

Why choose FarmDiscover for cooperation? 
Comparing with our competitors, we have much more advantages as follows: 

1.Since 2000 we have been exporting our parts and have rich experience in agriculture parts export.

2. More professional sales staffs to guarantee the better service.

3. Close to HangZhou/ZheJiang port,  Reduce the transportation cost and time, ensure timely delivery.

4. Better quality to guarantee better Credit.

 

Standard Or Nonstandard: Standard
Application: Agricultural Machinery, Tractor
Hardness: Hardened Tooth Surface
Manufacturing Method: Cast Gear
Toothed Portion Shape: Double Helical Gear
Material: Cast Steel
Customization:
Available

|

Customized Request

wheel sprocket

wheel sprocket System in Heavy Machinery and Industrial Equipment

Yes, a wheel sprocket system is commonly used in heavy machinery and industrial equipment for power transmission and motion control. The wheel sprocket configuration is a versatile and efficient method of transmitting rotational force between two shafts.

In heavy machinery and industrial equipment, the wheel is typically attached to one shaft, while the sprocket is mounted on another shaft. A chain or a toothed belt is wrapped around the wheel sprocket, connecting them. When the wheel is rotated, the chain or belt engages with the sprocket, causing the sprocket and the connected shaft to rotate as well. This mechanism allows the transfer of power from one shaft to the other, enabling various components and parts of the machinery to function.

Common applications of the wheel sprocket system in heavy machinery include:

  • Construction Machinery: Wheel loaders, excavators, cranes, and other construction equipment often use wheel sprocket systems for efficient power transmission in various moving parts.
  • Material Handling Equipment: Forklifts, conveyor systems, and other material handling equipment utilize wheel sprocket configurations to move goods and materials smoothly and reliably.
  • Mining Equipment: Mining machinery, such as drilling rigs and conveyors, often incorporate wheel sprocket assemblies for power transmission in challenging environments.
  • Agricultural Machinery: Tractors, combines, and other agricultural equipment use wheel sprocket systems to drive various components like wheels and harvesting mechanisms.
  • Industrial Robotics: Robots and automated systems in manufacturing often utilize wheel sprocket setups for precise motion control and efficient power transmission.

One of the key advantages of the wheel sprocket system is its ability to handle heavy loads and transmit power over long distances. It is a reliable and cost-effective method of power transmission in various industrial settings. However, proper maintenance and alignment are crucial to ensuring the system’s optimal performance and longevity.

Overall, the wheel sprocket system is a widely used and effective power transmission solution in heavy machinery and industrial equipment, offering versatility and efficiency in a range of applications.

wheel sprocket

Temperature Limits for wheel sprocket System’s Operation

The temperature limits for a wheel sprocket system’s operation depend on the materials used in the construction of the components. Different materials have varying temperature tolerances, and exceeding these limits can lead to reduced performance, premature wear, and even system failure.

Here are some common materials used in wheel sprocket systems and their general temperature limits:

  • Steel: Steel sprockets and wheels, which are widely used in many applications, typically have a temperature limit ranging from -40°C to 500°C (-40°F to 932°F). However, the specific temperature range may vary based on the grade of steel and any coatings or treatments applied.
  • Stainless Steel: Stainless steel sprockets and wheels offer improved corrosion resistance and can withstand higher temperatures than regular steel. Their temperature limit is typically between -100°C to 600°C (-148°F to 1112°F).
  • Plastics: Plastic sprockets and wheels are commonly used in low-load and low-speed applications. The temperature limit for plastic components varies widely depending on the type of plastic used. In general, it can range from -40°C to 150°C (-40°F to 302°F).
  • Aluminum: Aluminum sprockets and wheels have a temperature limit of approximately -40°C to 250°C (-40°F to 482°F). They are often used in applications where weight reduction is critical.

It’s essential to consult the manufacturer’s specifications and material data sheets for the specific components used in the wheel sprocket system to determine their temperature limits accurately. Factors such as load, speed, and environmental conditions can also influence the actual temperature tolerance of the system.

When operating a wheel sprocket system near its temperature limits, regular monitoring and maintenance are necessary to ensure the components’ integrity and overall system performance. If the application involves extreme temperatures beyond the typical limits of the materials, specialized high-temperature materials or cooling measures may be required to maintain reliable operation.

wheel sprocket

Advantages of Using a wheel sprocket Configuration

Using a wheel sprocket configuration for power transmission offers several advantages over other methods. Here are some key benefits:

1. Efficient Power Transmission:

The wheel sprocket assembly provide a highly efficient method of transmitting power between shafts with minimal energy loss. The teeth of the sprocket mesh with the links of the chain or the teeth of another sprocket, ensuring a positive engagement that reduces slippage and maximizes power transfer.

2. Versatility:

Wheels and sprockets are available in various sizes, configurations, and materials, making them highly versatile components for different applications. They can accommodate a wide range of speed and torque requirements, making them suitable for various mechanical systems.

3. Compact Design:

The compact design of wheel sprocket assemblies allows for space-saving installations in machinery. The concentric arrangement of the components minimizes the overall footprint, making it ideal for applications with limited space.

4. Precise Speed Control:

By selecting sprockets with different numbers of teeth, the gear ratio can be easily adjusted to achieve precise speed control in the driven shaft. This level of control is essential for many applications, such as conveyor systems, where different speeds are required for different processes.

5. High Torque Capacity:

wheel sprocket systems can handle high torque loads, making them suitable for heavy-duty applications. This high torque capacity is especially beneficial in industrial settings where large loads need to be moved or lifted.

6. Smooth and Quiet Operation:

When properly lubricated and maintained, the interaction between the sprocket and the chain or other sprockets results in smooth and quiet operation. This makes wheel sprocket systems preferable in applications where noise reduction is important.

7. Easy Installation and Maintenance:

Installing a wheel sprocket assembly is relatively straightforward, and they require minimal maintenance when used correctly. Periodic lubrication and tension adjustments are typically all that is needed to keep the system running smoothly.

8. Suitable for High-Speed Applications:

wheel sprocket configurations are well-suited for high-speed applications where belts or gears may not be as practical due to limitations in speed capabilities.

In summary, the wheel sprocket configuration offers efficient power transmission, versatility, compactness, precise speed control, high torque capacity, smooth operation, and ease of installation and maintenance. These advantages make it a popular choice in a wide range of mechanical systems and industrial applications.

China Custom Custom Design Driven Roller Chain Idler Sprocket  China Custom Custom Design Driven Roller Chain Idler Sprocket
editor by CX 2023-07-28